
HOMEWORK 3 COMPLEX ANALYSIS

KELLER VANDEBOGERT

1. Problem 1

Proof. Let f(z) =
∑n

k=0 z
k. Then, consider zf(z). It is easy to see

that f(z)− zf(z) = 1− zn+1. From here, we have:

f(z)− zf(z) = 1− zn+1 =⇒ f(z) =
1− zn+1

1− z
As desired. �

2. Problem 2

Proof. Consider f(eiφ), where f is defined as above, φ ∈ R. Note, by

Euler’s Formula, Re(f) = 1 + cos(φ) + · · ·+ cos(nφ). We then see:

f(eiφ) =
ei(n+1)φ − 1

eiφ − 1

=
ei(n+1)φ/2(ei(n+1)φ/2 − ei(n+1)φ/2)

eiφ/2(eiφ/2 − e−iφ/2)

=
einφ/2 sin

(
(n+ 1)/2φ

)
sin(φ/2)

=
cos(nφ/2) sin

(
(n+ 1)/2φ

)
+ i sin(nφ/2) sin

(
(n+ 1)/2φ

)
sin(φ/2)

(2.1)

Taking Re(f), we have:

Re(f) =
cos(nφ/2) sin

(
(n+ 1)/2φ

)
sin(φ/2)
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We now employ the following identity that says:

cosu sin v =
1

2

(
sin(u+ v)− sin(u− v)

)
which gives

cos(nφ/2) sin
(

(n+ 1)/2φ
)

=
1

2

(
sin
(
n+ 1/2

)
φ+ sin(φ/2)

)
Plugging this back in, we have:

1 + cos(φ) + · · ·+ cos(nφ) =
1

2
+

sin
(
n+ 1/2

)
φ

2 sin(φ/2)

And we are done.

�

3. Problem 3

Proof. We want to look at the limit of the partial sums. By the result

of Problem 1, we have that:

n∑
k=0

zk =
1− zn+1

1− z
We then see that as n → ∞, the only term affected in zn+1. This

term tends to 0 if |z| < 1 and becomes arbitrarily large if |z| > 1. Thus,

for |z| < 1,

lim
n→∞

n∑
k=0

zk =
∞∑
n=0

zn =
1

1− z
And diverges for |z| > 1. �

4. Problem 4

Proof. We have two cases: |z| < 1 and |z| > 1. When |z| < 1, obviously

zn → 0. Thus,

f(z) = −1
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When |z| < 1. Now suppose that |z| > 1. Then, we see that 1
zn
→ 0.

Using this,

f(z) = lim
n→∞

zn − 1

zn + 1
= lim

n→∞

zn(1− 1/zn)

zn(1 + 1/zn)
= 1

If f(z) were defined to be continuous at |z| = 1, we would have that

lim
|z|→1−

f(z) = lim
|z|→1+

f(z) =⇒ −1 = 1

Which never holds, so there is no way. �

5. Problem 5

Proof. We use the natural definitions: f is even if f(−z) = f(z) and

f is odd if f(−z) = −f(z) for all z ∈ C. From here we immediately

deduce that zn is even if n is even and odd for n odd. If we suppose

a function has some given parity, then all terms in its power series

representation must also have the same parity. Thus, for f even, we

have:

f(z) =
∞∑
n=0

a2nz
2n

and for f odd,

f(z) =
∞∑
n=0

a2n+1z
2n+1

for complex coefficients ak. �

6. Problem 6

Proof. Expanding in partial fractions,
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f(z) =
1

z + 1
− 1

z + 2

=
1

z + 1
− 1

2

1

z/2 + 1

=
∞∑
n=0

(−1)nzn +
1

2

∞∑
n=0

(−1)n+1 z
n

2n

=
∞∑
n=0

(−1)n
(

1− 1

2n+1

)
zn

(6.1)

Now, employing the ratio test:

1

2

2n+2 − 1

2n+1 − 1
|z| < 1

Let n → ∞, and we see find |z| < 1, so f(z) disk of convergence

with radius 1.

�

7. Problem 7

Proof. Define

log(1 + z) =
∞∑
n=1

(−1)n+1

n
zn

and

log(1− z) =
∞∑
n=1

zn

n

The disc of convergence is the same for both, since the ratio test

yields the exact same expression:

n

n+ 1
|z| < 1

And letting n→∞, we see |z| < 1.
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For the derivatives, we differentiate the series term by term:

d

dz

(
log(1 + z)

)
=
∞∑
n=0

(−1)nzn =
1

1 + z

So that

d

dz

(
log(1 + z)

)
=

1

1 + z

As expected. Similarly,

d

dz

(
log(1− z)

)
=
∞∑
n=0

zn =
1

1− z
So that

d

dz

(
log(1− z)

)
=

1

1− z
This is of course similar to the real variable case where the Maclaurin

series for log(1+x) can be computed and is found to be
∑∞

n=1
(−1)n+1

n
zn,

and the derivative is the same. For log(1 + z), the power series is

different by a negative sign for the real case, and also we see that the

derivative does not necessarily agree with the real case.

�

8. Problem 8

Proof. Define

cos(z) =
∞∑
n=0

(−1)n

(2n)!
z2n

sin(z) =
∞∑
n=0

(−1)n

(2n+ 1)!
z2n+1

Using the ratio test for cos(z):
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1

(2n+ 2)(2n+ 1)
|z| < 1 =⇒ |z| < (2n+ 2)(2n+ 1)

Letting n→∞, clearly our radius of convergence in infinite, and so

the disk of convergence is C. Similarly, for sin(z):

1

(2n+ 3)(2n+ 2)
|z| < 1 =⇒ |z| < (2n+ 3)(2n+ 2)

And we see that the disk of convergence is again all of C after letting

n→∞.

For the derivatives, again differentiate term by term:

d

dz
cos(z) =

∞∑
n=1

(−1)n

(2n− 1)!
z2n−1

= −
∞∑
n=0

(−1)n

(2n+ 1)!
z2n+1

= − sin(z)

(8.1)

And similarly:

d

dz
sin(z) =

∞∑
n=0

(−1)n

(2n)!
z2n

= cos(z)

(8.2)

Again these results and series are the exact same as for the real

variable case, and the derivatives are identical as well. �

9. Problem 9

Proof. Letting z → iz and z → −iz in the power series representation

for ez, we have:
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eiz =
∞∑
n=0

in

n!
zn

=
∞∑
n=0

(−1)n

(2n)!
z(2n) + i

∞∑
n=0

(−1)n

(2n+ 1)!
z2n+1

= cos(z) + i sin(z)

(9.1)

And similarly:

(9.2) e−iz = cos(z)− i sin(z)

Now, adding (9.1) to (9.2):

2 cos(z) = eiz + e−iz =⇒ cos(z) =
eiz + e−iz

2

And now subtract (9.2) from (9.1):

2i sin(z) = eiz − e−iz =⇒ sin(z) =
eiz − e−iz

2i

As desired.

�

10. Problem 10

Proof. For x ≤ 0, clearly f ′(x) = 0 (indeed f (n)(z) = 0 for all n ∈ Z+).

Now consider f ′(x) for x = 0. By definition of derivative, this is:

f ′(x) = lim
h→0+

e−
1
h2

h

= lim
h→∞

h

eh2

= 0

(10.1)
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Where we merely employ L’Hospital’s rule for the final step. Thus,

f ′(0) = 0, since the limit exists and is equal from both the right and

the left. For x > 0, we have (by the chain rule):

f ′(x) =
2e−1/x

2

x3

So this function is differentiable everywhere. Now consider the Maclau-

rin series. We want to compute the nth derivative at zero, ie f (n)(0).

When x ≤ 0 we have already seen this is just 0. Now use induction on

n for the case when x > 0. The base case is done for above for n = 1,

but for completeness we also compute for n = 2:

f ′′(x) = lim
h→0+

2e−1/h
2

h4

= lim
h→∞

2h4

eh2

= 0

(10.2)

Where L’Hospital’s is again employed for the last step. Now by the

inductive Hypothesis:

f (n)(x) =
d

dx
f (n−1)(x)

= lim
h→0+

f (n−1)(h)

h

= lim
h→∞

hf (n−1)(1/h)

(10.3)

From here, it is important to note that f (n−1)(1/x) = p(x)

ex2
, where

p(x) is some polynomial of degree n. More succinctly, we have that

f (n−1)(1/x) = O
(
xn

ex2

)
Plugging this in above, we see that:
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f (n)(x) = lim
h→∞
O
(hn+1

eh2

)
Which then tends to 0. Thus, f (n)(0) = 0 for all positive integers n.

Thus, by using the formula for the Maclaurin series, we see that every

constant in the power series is identically 0, implying that f(x) = 0,

which is of course not f . Thus, the Maclaurin series does not converge

to f .

�


