HOMEWORK 3 COMPLEX ANALYSIS

KELLER VANDEBOGERT

1. PROBLEM 1

Proof. Let f(z) = >__,2" Then, consider zf(z). It is easy to see
that f(z) — 2f(z) =1 — 2", From here, we have:

1_Zn+1
f(2) = 2f(z) =1-2""" = [f(z) = 1>

As desired. U

2. PROBLEM 2

Proof. Consider f(e'?), where f is defined as above, ¢ € R. Note, by
Euler’s Formula, Re(f) = 1+ cos(¢) + - - - + cos(n¢). We then see:

(2.1)
fe?) =

ei(n+1)¢ -1
—
el D0/2(int)6/2 _ ciln+1)9/2)
¢i%/2(ci0/2 — ¢—id/2)

/2 sin <(n + 1)/2¢>
N sin(¢/2)

cos(ng/2) sin ((n + 1)/2¢) + isin(n¢/2) sin ((n + 1)/2¢>
B sin(¢/2)

Taking Re(f), we have:

cos(ng/2) sin ((n + 1)/2¢)
felh = s (5/2)
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We now employ the following identity that says:
cosusiny = % (sin(u +v) — sin(u — v))
which gives
cos(ng/2) sin (( )/2¢> (sm (n+1/2)¢+ sin(¢/2))

Plugging this back in, we have:

sin(n+1/2
L cos(g) -+ cos{nd) = 5 + Q(Sin@//@w

And we are done.

3. PROBLEM 3

Proof. We want to look at the limit of the partial sums. By the result
of Problem 1, we have that:

1 — Zn—l—l

Zz 11—z

We then see that as n — oo, the only term affected in 2!, This

term tends to 0 if |z| < 1 and becomes arbitrarily large if |z| > 1. Thus,

for |z| < 1,
: k n __
Jm y =) 2=
k=0 n=0
And diverges for |z| > 1. O

4. PROBLEM 4

Proof. We have two cases: |z| < 1 and |z| > 1. When |z| < 1, obviously

z" — 0. Thus,
flz)=-1
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When |z| < 1. Now suppose that |z| > 1. Then, we see that zin — 0.

Using this,

"—1 "1—-1/z"
f(z) = lim z — lim M —

If f(z) were defined to be continuous at |z| = 1, we would have that

lim f(z)= lim f(z) = —-1=1

|z|]—1— |z]—1t
Which never holds, so there is no way. 0
5. PROBLEM 5

Proof. We use the natural definitions: f is even if f(—z) = f(2) and
fisodd if f(—z) = —f(z) for all z € C. From here we immediately
deduce that z" is even if n is even and odd for n odd. If we suppose
a function has some given parity, then all terms in its power series
representation must also have the same parity. Thus, for f even, we

have:

flz) = Z Q92"
n=0

and for f odd,
f(z) = Z a2n+122n+1
n=0
for complex coefficients ay. O

6. PROBLEM 6

Proof. Expanding in partial fractions,
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1 1
f(z)_z—l—l_z+2
B 1 1 1
241 22/2+1
(6.1) x o
D3RSI
n=0

n 1 n
= ZH) (1- ﬁ)z
n=0
Now, employing the ratio test:
1 2n+2 -1

22+l

Let n — oo, and we see find |z| < 1, so f(z) disk of convergence

|z]<1

with radius 1

7. PROBLEM 7

Proof. Define

n+1

log(1+ 2) = i

n=1
and

log(l —2z) = Z—

The disc of convergence is the same for both, since the ratio test

yields the exact same expression:

n

|z] <1

And letting n — oo, we see |z| < 1.



HOMEWORK 3 COMPLEX ANALYSIS 5

For the derivatives, we differentiate the series term by term:

d [o.¢]
E(log(l + Z)) = Z(—l)”z“ =7 j_ .
n=0
So that
d
7= (os1+2)) = 17

As expected. Similarly,

£ (s1-5) == L

So that

%(1%(1 _Z)) - 1:z

This is of course similar to the real variable case where the Maclaurin

oo (=Dt n
n=1 n < Y

series for log(14z) can be computed and is found to be ) |
and the derivative is the same. For log(l + z), the power series is
different by a negative sign for the real case, and also we see that the

derivative does not necessarily agree with the real case.

8. PROBLEM 8

Proof. Define

n

- —1 2n
cos(z) = Z ((271;! z

n=0

sin(z) = Z ﬂz%Jrl

!
—~ (2n+1)!

Using the ratio test for cos(z):
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1
(2n+2)(2n +1)

Letting n — o0, clearly our radius of convergence in infinite, and so

|2l <1 = |z < (2n+2)(2n+1)

the disk of convergence is C. Similarly, for sin(z):

1
(2n +3)(2n + 2)

And we see that the disk of convergence is again all of C after letting

2] <1 = |z] < (2n+3)(2n + 2)

n — 0.

For the derivatives, again differentiate term by term:

d I U Gt )
%cos(z) = Z mz

(8.1) o —D"
- _nz; (2(n +)1)!Z
= —sin(z)

And similarly:

ZZn

| =
2
]
—~
N
S—
1
NgE:
i
—_
S—
3

(8.2) dz — (2n)!

= cos(z)
Again these results and series are the exact same as for the real

variable case, and the derivatives are identical as well. 0]

9. PROBLEM 9

Proof. Letting z — iz and z — —iz in the power series representation

for e*, we have:
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iz OO " n
e = Z EZ
n=0
(9-1) o (1) (1)
_ ( . 2n+1
= 22n)+1i Yy ————z
S5 LU
= cos(z) + isin(z)
And similarly:
(9.2) e = cos(z) —isin(z)
Now, adding (9.1) to (9.2):
2cos(z) = e + e = cos(z) = %
And now subtract (9.2) from (9.1):
2isin(z) = e”* —e ¥ = sin(z) = ¢ _2.6
i
As desired.

10. PROBLEM 10

Proof. For z <0, clearly f/(z) = 0 (indeed f(™(z) =0 for all n € Z%).

Now consider f’(x) for x = 0. By definition of derivative, this is:

f'(z) = lim

(10.1)
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Where we merely employ L’Hospital’s rule for the final step. Thus,
f(0) = 0, since the limit exists and is equal from both the right and
the left. For x > 0, we have (by the chain rule):

2e~ 1/

3

f()

So this function is differentiable everywhere. Now consider the Maclau-
rin series. We want to compute the nth derivative at zero, ie f™(0).
When x < 0 we have already seen this is just 0. Now use induction on
n for the case when x > 0. The base case is done for above for n =1,

but for completeness we also compute for n = 2:

2671/112

" — 1

)=l =7

(10.2) 2t
= e

=0
Where L’Hospital’s is again employed for the last step. Now by the

inductive Hypothesis:

d

7O @) = ()

(10.3) TN Al ()
h—0+ h
= lim hf™Y(1/h)

h— 00

From here, it is important to note that f"~V(1/z) = 22 where

er

p(z) is some polynomial of degree n. More succinctly, we have that

F0(1/2) = 0 2)

Plugging this in above, we see that:
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F™(x) = lim O(hn—ﬂ)
h—oc0 6h2
Which then tends to 0. Thus, £ (0) = 0 for all positive integers n.
Thus, by using the formula for the Maclaurin series, we see that every
constant in the power series is identically 0, implying that f(x) = 0,

which is of course not f. Thus, the Maclaurin series does not converge

to f.



